TEST

SECTION - A

Question numbers 1 to 10 carry 1 mark each.

1. If the binary operation * on the set Z of integers is defined by $a * b=a+b-5$, then write the identity element for the operation * in Z.
2. Write the value of $\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)$.
3. If A is a square matrix such that $A^{2}=A$, then write the value of $(I+A)^{2}-3 A$.
4. If $x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$, write the value of x.
5. Write the value of the following determinants : $\left|\begin{array}{ccc}102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6\end{array}\right|$.
6. If $\int\left(\frac{x-1}{x^{2}}\right) e^{x} d x=f(x) e^{x}+c$, then write the value of $f(x)$.
7. If $\int_{0}^{a} 3 x^{2} d x=8$, write the value of ' a '.
8. Write the value of $(\hat{\imath} \times \hat{\jmath}) \cdot \hat{k}+(\hat{\jmath} \times \hat{k}) \cdot \hat{\imath}$
9. Write the value of the area of the parallelogram determined by the vector $2 \hat{\imath}$ and $3 \hat{\jmath}$.
10. Write the direction cosines of a line parallel to z-axis.

SECTION - B

Question numbers 11 to 22 carry 4 mark each.

11. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, show that $f o f(x)=x$ for all $x \neq \frac{2}{3}$. What is the inverse of f ?
12. Prove that: $\sin ^{-1}\left(\frac{63}{65}\right)=\sin ^{-1}\left(\frac{5}{13}\right)+\cos ^{-1}\left(\frac{3}{5}\right)$

OR
Solve for : $2 \tan ^{-1}(\sin x)=\tan ^{-1}(2 \sec x), x \neq \frac{\pi}{2}$
13. Using properties of determinants, prove that: $\left|\begin{array}{ccc}a & a+b & a+b+c \\ 2 a & 3 a+2 b & 4 a+3 b+2 c \\ 3 a & 6 a+3 b & 10 a+6 b+3 c\end{array}\right|=a^{3}$
14. If $x^{m} y^{n}=(x+y)^{m+n}$, prove that $\frac{d y}{d x}=\frac{y}{x}$.
15. If $y=e^{a \cos ^{-1} x},-1 \leq x \leq 1$, show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-a^{2} y=0$

OR
If $x \sqrt{1+y}+y \sqrt{1+x}=0,-1<x<1, x \neq y$, then prove that, $\frac{d y}{d x}=-\frac{1}{(1+x)^{2}}$
16. Show that $y=\log (1+x)-\frac{2 x}{2+x}, x>-1$, is an increasing function of x throughout its domain.

OR
Find the equation of the normal at the point $\left(a m^{2}, a m^{3}\right)$ for the curve $a y^{2}=x^{3}$.
17. Evaluate : $\int x^{2} \tan ^{-1} d d x$.

OR
Evaluate: $\int \frac{3 x-1}{(x+2)^{2}} d x$.
18. Solve the following differential equation : $\left[\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right] \frac{d x}{d y}=1, x \neq 0$.
19. Solve the following differential equation : $3 e^{x} \tan y d x+\left(2-e^{x}\right) \sec ^{2} y d y=0$, given that when $x=0, y=\frac{\pi}{4}$.
20. If $\vec{\alpha}=3 \hat{\imath}+4 \hat{\jmath}+5 \hat{k}$ and $\vec{\beta}=2 \hat{\imath}+\hat{\jmath}-4 \hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta}=\overrightarrow{\beta_{1}}+\overrightarrow{\beta_{2}}$, where $\overrightarrow{\beta_{1}}$ is parallel to $\vec{\alpha}$ and $\overrightarrow{\beta_{2}}$ is perpendicular to $\vec{\alpha}$.
21. Find the vector and Cartesian equations of the line passing through the point $P(1,2,3)$ and parallel to the planes $\vec{r} .(\hat{\imath}-\hat{\jmath}+2 \hat{k})=5$ and $\vec{r} .(3 \hat{\imath}+\hat{\jmath}+\hat{k})=6$.
22. A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes and hence find its mean.

SECTION - C

Question numbers 23 to 29 carry 6mark each.

23. Using matrices, solve the following system of equations : $x-y+z=4 ; 2 x+y-3 z=0 ; x+y+z=2$

OR
If $A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$, find $(A B)^{-1}$.
24. Show that the altitude of the right circular cone of maximum volume that can be inscribe in a sphere of radius R is $\frac{4 R}{3}$.
25. Find the area of the region in the first quadrant enclosed by x-axis, the line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$.
26. Evaluate : $\int_{1}^{3}\left(x^{2}+x\right) d x$ as a limit of sums.

OR
Evaluate : $\int_{0}^{\pi / 4} \frac{\cos ^{2} x}{\cos ^{2} x+4 \sin ^{2} x} d x$
27. Find the vector equation of the plane passing through the points $(2,1,-1)$ and $(-1,3,4)$ and perpendicular to the plane $x-2 y+4 z=10$. Also show that the plane thus obtained contains the line $\vec{r}=-\hat{\imath}+3 \hat{\jmath}+4 \hat{k}+\lambda(3 \hat{\imath}-2 \hat{\jmath}-5 \hat{k})$.
28. A company produced soft drinks that has a contract which requires that a minimum of 80 units of the chemical A and 60 units of the chemical B go into each bottle of the drink. The chemicals are available in prepared mix packets from two different suppliers. Supplier S had a packet of mix of 4 units of A and 2 units of B that costs Rs. 10 . The supplier T has a packet of mix of 1 unit of A and 1 unit of B that costs Rs. 4. How many packets of mixes from S and T should the company purchase to honour the contract requirement and yet minimum cost? Make a LPP and solve graphically.
29. In a certain college, 4% of boys and 1% of girls are taller than 1.75 metres. Furthermore, 60% of the students in the college are girls. A student is selected at random from the college and is found to be taller than 1.75 metres. Find the probability that the selected student is girl.

