GENERAL INSTRUCTIONS:

- All questions are compulsory. Maximum Marks are 50.
- The question paper consists of 27 Questions.
- **Section A**: Question 1 to 10 are 1 mark each.
- **Section B**: Question 11 to 16 are 1 marks each.
- **Section C**: Question 17 to 19 are 2 marks each.
- **Section D**: Question 20 to 25 are 3 marks each.
- Section E: Question 26 to 27 are 5 marks each.

SECTION A $(1 \times 10 = 10)$

- 1. In the reaction, $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$. When one mole of ammonia and one mole of oxygen are made to react to completion, then
 - (a) 1.0 mole of H₂O is produced
 - (b) All the oxygen is consumed
 - (c) 1.0 mol of NO is formed
 - (d) All the ammonia is consumed.
- 2. Which of the following sets of the quantum numbers is permitted?

(a)
$$n = 4$$
, $l = 2$, $m_l = +3$, $m_s = +\frac{1}{2}$

(b)
$$n = 3, 1 = 3, m_l = +3, m_s = +\frac{1}{2}$$

(c)
$$n = 4, 1 = 0, m_l = 0, m_s = +\frac{1}{2}$$

(d)
$$n = 4, 1 = 3, m_l = +1, m_s = 0$$

- 3. The correct order of decreasing first ionization energy is
 - (a) C > B > Be > Li
 - (b) C > Be > B > Li
 - (c) B > C > Be > Li
 - (d) Be > Li > B > C.
- **4.** The hybridisation of atomic orbitals of nitrogen in NO₂⁺, NO₃⁻ and NH₄⁺ are respectively,
 - (a) sp, sp 3 , sp 2

- (c) sp^2 , sp, sp^3
- (d) sp^2 , sp^3 , sp.
- **5.** The ratio between the root mean square velocity of H₂ at 50 K and that of O₂ at 800 K is
 - (a) 4
- (b) 2
- (c) 1
- (d) 1/4
- **6.** The enthalpy of formation of NH_3 is -46 kJ mol⁻¹. The enthalpy change for the reaction,

$$2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$$
, is

- (a) + 23 kJ
- (b) + 184 kJ

(b) sp, sp 2 , sp 3

- (c) + 46 kJ
- (d) + 92 kJ.

7. In the ration,

heat

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

If pressure is increased then the equilibrium constant would

- (a) increase
- (b) remain unchanged
- (c) decrease
- (d) sometimes increase sometimes decrease
- **8.** The value of ΔG^0 for a reaction, having K = 1, would be
 - (a) RT

- (b) 1
- (c) 0
- (d) + RT.

- **9.** The conjugate base of HCO_3^- is
 - (a) H_2CO_3
- (b) CO₂
- (c) H₂O
- (d) CO_3^{2-} .

- 10. Species acting both as Bronsted acid and base is
 - (a) HSO₄
- (b) Na₂CO₃
- (c) NH₃
- (d) OH-.

SECTION B $(1 \times 6 = 6)$

- **11.** What is meant by common ion effect?
- **12.** (a) predict the sign of ΔS for the following reaction:

$$CaCO_3(s) \xrightarrow{heat} CaO(s) + CO_2(g)$$

(b) State Hess's law.

OR

Define:

- (a) Standard enthalpy of formation.
- (b) Standard enthalpy of neutralisation.
- **13.** Which gas law is shown by the following graph?

- **14.** Write the IUPAC name and symbol for the element with atomic number 115.
- 15. Write K_p in terms of K_c for the following chemical equation:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2 NH_3(g)$$

16. Why are the droplets of water spherical in shape?

SECTION $C(2\times3=6)$

- **17.** Calculate the number of atoms in each of the following:
 - (a) 7.85 g of Fe (Atomic mass of Fe= 56 u)
 - (b) 4.68 mg of Si (Atomic mass of Si = 28 u)
- **18.** (a) Write electronic configuration of Cu^+ ion (Z = 29).
 - (b) Calculate the de Broglie wavelength of milligram sized object moving with 1% speed of light.

Planck's constant (h) = 6.63×10^{-34} kg m² s⁻¹, Velocity of light (c) = 3.0×10^8 m s⁻¹

- **19.** (a) What is the SI unit of density?
 - (b) Calculate the volume occupied by 88 g of CO₂ at 30°C and 1 bar pressure.
 - $(R = 0.083 \text{ bar L K}^{-1} \text{ mol}^{-1})$

SECTION $D(3\times6=18)$

- **20.** Calculate the bond order of N_2 and N_2^+ and compare their stability.
- 21. (a) Which series of lines of the hydrogen spectrum lies in UV region?
- (b)the mass of electron is 9.1×10^{-31} kg. If its K.E. is 3×10^{-25} J, calculate its wavelength. (h = 6.626×10^{-25} J)

- CLASS: 11th
- **22.** (a) Which hybrid orbitals are used by carbon in compound CH₃COOH?
 - (b) Predict the shape of PF₅ using VSEPR model.
 - (c) Write one difference between a sigma bond and a pi bond.
- **23.** Account for the following:
 - (a) Ionisation enthalpy of 'Ne' is more than 'F' although 'Ne' has bigger atomic size than 'F'.
 - (b) Al³⁺ is smaller than Mg²⁺ although both are isoelectronic.
 - (c) Noble gases have low boiling points.
- **24.** Calculate the standard enthalpy of formation of $C_6H_6(1)$ form the following data:

$$\begin{split} \mathrm{C_6H_6(\it{l})} + \frac{15}{2}\mathrm{O_2(\it{g})} &\longrightarrow 6\mathrm{CO_2(\it{g})} + 3\mathrm{H_2O(\it{l})}; \\ \Delta_c\mathrm{H}^\circ &= -3266.0 \text{ kJ mol}^{-1} \\ \mathrm{C(\it{s})} + \mathrm{O_2(\it{g})} &\longrightarrow \mathrm{CO_2(\it{g})}; \\ \Delta_f\mathrm{H}^\circ &= -393.1 \text{ kJ mol}^{-1} \\ \mathrm{H_2(\it{g})} + \frac{1}{2}\mathrm{O_2(\it{g})} &\longrightarrow \mathrm{H_2O(\it{l})}; \Delta_f\mathrm{H}^\circ &= -286.0 \text{ kJ mol}^{-1} \end{split}$$

25. The density of 3 molal solution of NaCl is 1.110 g ml⁻¹. Calculate the molarity of the solution.

OR

1 M solution of NaNO₃ has density 1.25 gcm⁻³. Calculate the molality. [Molar mass of NaNO₃ is 85 g mol⁻¹].

SECTION E $(5 \times 2 = 10)$

- **26.** (a) The concentration of hydrogen ion sample of soft drink is 4.0×10^{-3} M. What is its pH? [log 4 = 0.6021]
 - (b)The equilibrium constant 'K' for reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ is 4. What will be 'K'' for the reaction $HI(g) \rightleftharpoons \frac{1}{2}H_2(g) + \frac{1}{2}I_2(g)$?
 - (c) What is solubility product? What is the effect temperature on K_{sp}?

OR

- (a) What do you conclude when $Q_c > K_c$?
- (b) What is meant by common ion effect?
- (c) What is the effect of temperature on K_w (ionic product of water)?
- (d) K_w of water at 373 K is 1×10^{-12} . What will be the pH of H₂O at 373K? Is water acidic, basic or neutral at this temperature?
- **27.** On the basis of Le Chatelier's principle, explain how temperature and pressure can be adjusted to increase the yield of ammonia in the following reaction:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
; $\Delta H = -92.38 \text{ kJ mol}^{-1}$

What will be the effect of addition of argon to the above reaction mixture at constant volume?

(b) Calculate the pH of 10⁻⁸ M HCl solution.

OR

(a) The value of K_c for the reaction 2HI (g) \rightleftharpoons H₂ (g) + I₂ (g) is 1 × 10⁻⁴.

At a given time, the composition of reaction mixture is

$$[HI] = 2 \times 10^{-5} \text{ M}, [H_2] = 1 \times 10^{-5} \text{ M} \text{ and } [I_2] = 1 \times 10^{-5} \text{ M}$$

In which direction will the reaction proceed?