. . . . . . . . . . . . . . . . . .

## <u>INSTRUCTIONS</u>: NUMBER SYSTEM, POLYNIMIALS, CO-ORDINATE GEOMETRY, LINEAR EQUATIONS IN TWO VARIABLES, INTRODUCTION TO EUCLID'S GEOMETRY, LINES AND ANGLES, TRIANGLES, HERON'S FORMULA.

- The question paper consists of **26 questions** divided into four sections A, B, C and D.
- Section A: Q. No. 1 to 10 carries **1 mark** each.
- Section B: Q. No. 11 to 13 carries **2 marks** each.
- Section C: Q. No. 14 to 21 carries **3 marks** each.
- Section D: Q. No. 22 to 26 carries **4 marks** each.

• Time allotted is **2 hours. The maximum marks are 60.** 

## $SECTION - A (1 \times 10 = 10)$

| 1.  | $\sqrt{10} \times \sqrt{15}$ is equal to                                                                           |                             |                             |                        |
|-----|--------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|------------------------|
|     | (a) $5\sqrt{6}$                                                                                                    | (b) $6\sqrt{5}$             | (c) $\sqrt{30}$             | (d) $\sqrt{25}$        |
| 2.  | If $x - 2$ is a factor of $x^2 + 3ax - 2a$ , then $a =$                                                            |                             |                             |                        |
|     | (a) 2                                                                                                              | (b) – 2                     | (c) 1                       | (d) – 1                |
| 3.  | In this figure, AOB is a straight line. If $\angle AOC + \angle BOD = 85^{\circ}$ , then $\angle COD =$            |                             |                             |                        |
|     | (a) $85^{\circ}$                                                                                                   | (b) $90^{\circ}$            | (c) $95^{\circ}$            | (d) $100^{\circ}$ c b  |
|     |                                                                                                                    |                             |                             |                        |
| 4.  | If two acute angles of a right triangle are equal, then each acute is equal to                                     |                             |                             |                        |
|     | (a) $30^{\circ}$                                                                                                   | (b) $45^{\circ}$            | (c) $60^{\circ}$            | (d) $90^{\circ}$       |
| 5.  | The equation $x - 2 = 0$ on number line is represented by                                                          |                             |                             |                        |
|     | (a) a line                                                                                                         | (b) a point                 | (c) infinitely many line    | s (d) two lines        |
| 6.  | In a $\triangle ABC$ , if AB = AC and BC is produced to D such that $\angle ACD = 100^{\circ}$ , then $\angle A =$ |                             |                             |                        |
|     | (a) $20^{\circ}$                                                                                                   | (b) $40^{\circ}$            | (c) $60^{\circ}$            | (d) $80^{\circ}$       |
| 7.  | Points (- 4, 0) and (7, 0) lie                                                                                     |                             |                             |                        |
|     | (a) on x-axis                                                                                                      | (b) y-axis                  | (c) in first quadrant       | (d) In second quadrant |
| 8.  | If $(2^3)^2 = 4^x$ , then $3^x =$                                                                                  |                             |                             |                        |
|     | (a) 3                                                                                                              | (b) 6                       | (c) 9                       | (d) 27                 |
| 9.  | The length of each side of an equilateral triangle of area $4\sqrt{3}$ cm <sup>2</sup> , is                        |                             |                             |                        |
|     | (a) 4 cm                                                                                                           | (b) $\frac{4}{\sqrt{3}}$ cm | (c) $\frac{\sqrt{3}}{4}$ cm | (d) 3 cm               |
| 10. | If $x + \frac{1}{x} = 5$ , then $x^2 + \frac{1}{x^2} =$                                                            |                             |                             |                        |
|     | (a) 25                                                                                                             | (b) 10                      | (c) 23                      | (d) 27                 |
|     |                                                                                                                    |                             |                             |                        |

## $SECTION - B (2 \times 3 = 6)$

**11.** In fig 6.24 if PQ || RS,  $\angle$ MXQ = 135<sup>0</sup> and  $\angle$ MYR = 40<sup>0</sup>, find  $\angle$ XMY.



12. (i) Rationalize the denominator of  $\frac{1}{2+\sqrt{3}}$ .

(ii) Rationalize the denominator of  $\frac{5}{\sqrt{3-\sqrt{5}}}$ 

**13.** Find the value of k, if x = 2, y = 1 is a solution of the equation 2x + 3y = k.

## **SECTION** – C $(3 \times 8 = 24)$

- **14.** Factorise  $8x^3 + 27y^3 + 36x^2Y + 54xy^2$
- **15.** Does Euclid's fifth postulate imply the existence of parallel lines? Explain.
- 16. In fig., lines PQ and RS intersect each other at point O. If  $\angle POR$ :  $\angle ROQ = 5:7$ , find all the angels.



17. Find the area of a triangle, two sides of which are 8 cm and 11 cm and the perimeter is 32 cm (see fig).



**18.** Line-segment AB is parallel to another line-segment CD. O is the mid-point of AD(see fig). Show that (i)  $\triangle AOB \cong \triangle DOC$  (ii) O is also the mid-point of BC.



**19.** In fig., sides AB and AC of  $\triangle$ ABC are extended to points P and Q respectively. Also,  $\angle$ PBC <  $\angle$ QCB. Show that AC > AB.



**20.** In an isosceles triangle ABC with AB = AC, D and E are points on BC such that BE = CD (see Fig). Show that AD = AE.



**21.** Students of a school staged a rally for cleanliness campaign. They walked through the lanes in two groups. One group walked through the lanes AB, BC and CA; while the other through AC, CD and DA (see fig). Then they cleaned the area enclosed within their lanes. If AB = 9 m, BC = 40 m, CD = 15 m, DA = 28 m and  $\angle B = 90^{\circ}$ , which group cleaned more area and by how much? Find the total area cleaned by the students (neglecting the width of the lanes).





- **22.** Factorise:  $x^3 23x^3 + 142x 120$ .
- **23.** Locate the points (5, 0), (0, 5), (2, 5), (5, 2), (-3, 5), (-3, -5), (5, -3) and (6, 1) in the Cartesian plane.
- 24. The taxi fare in a city is a s follows: For the first kilometer, the fare is Rs 8 and for the subsequent distance it is Rs 5 per km. taking the distance covered as x km and total fare as Rs y, write a linear equation for this information, and draw its graph.
- **25.** In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see fig). Show that:
  - (i)  $\triangle AMC \cong \triangle BMD$ (ii)  $\angle DBC$  is a right angle. (iii)  $\triangle DBC \cong \triangle ACB$ (iv)  $CM = \frac{1}{2}AB$ D
    A B
    C
- **26.** Verify that  $x^3 + y^3 + z^3 3xyz = \frac{1}{2}(x + y + z)[(x y)^2 + (y z)^2 + (z x)^2]$