GRAND TEST - 2

INSTRUCTIONS: NUMBER SYSTEM, POLYNIMIALS, CO-ORDINATE GEOMETRY, LINEAR EQUATIONS IN TWO VARIABLES, INTRODUCTION TO EUCLID'S GEOMETRY, LINES AND ANGLES, TRIANGLES, HERON'S FORMULA.

- The question paper consists of $\mathbf{2 6}$ questions divided into four sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
- Section - A: Q. No. 1 to 10 carries 1 mark each.
- Section - B: Q. No. 11 to 13 carries 2 marks each.
- Section - C: Q. No. 14 to 21 carries $\mathbf{3}$ marks each.
- Section - D: Q. No. 22 to 26 carries 4 marks each.

Time allotted is $\mathbf{2}$ hours. The maximum marks are 60.

SECTION - A ($\mathbf{1} \times \mathbf{1 0}=\mathbf{1 0})$

1. $\sqrt{10} \times \sqrt{15}$ is equal to
(a) $5 \sqrt{6}$
(b) $6 \sqrt{5}$
(c) $\sqrt{30}$
(d) $\sqrt{25}$
2. If $x-2$ is a factor of $x^{2}+3 a x-2 a$, then $a=$
(a) 2
(b) -2
(c) 1
(d) -1
3. In this figure, AOB is a straight line. If $\angle \mathrm{AOC}+\angle \mathrm{BOD}=85^{\circ}$, then $\angle \mathrm{COD}=$
(a) 85°
(b) 90°
(c) 95^{0}
(d) 100^{0}
4. If two acute angles of a right triangle are equal, then each acute is equal to

(a) 30°
(b) 45^{0}
(c) 60°
(d) 90°
5. The equation $x-2=0$ on number line is represented by
(a) a line
(b) a point
(c) infinitely many lines
(d) two lines
6. In a $\triangle A B C$, if $A B=A C$ and $B C$ is produced to D such that $\angle A C D=100^{\circ}$, then $\angle A=$
(a) 20°
(b) 40°
(c) 60°
(d) 80°
7. Points $(-4,0)$ and $(7,0)$ lie
(a) on x-axis
(b) y-axis
(c) in first quadrant
(d) In second quadrant
8. If $\left(2^{3}\right)^{2}=4^{x}$, then $3^{x}=$
(a) 3
(b) 6
(c) 9
(d) 27
9. The length of each side of an equilateral triangle of area $4 \sqrt{3} \mathrm{~cm}^{2}$, is
(a) 4 cm
(b) $\frac{4}{\sqrt{3}} \mathrm{~cm}$
(c) $\frac{\sqrt{3}}{4} \mathrm{~cm}$
(d) 3 cm
10. If $\mathrm{x}+\frac{1}{x}=5$, then $\mathrm{x}^{2}+\frac{1}{x^{2}}=$
(a) 25
(b) 10
(c) 23
(d) 27

SECTION - B $(2 \times 3=6)$
11. In fig 6.24 if $\mathrm{PQ} \| \mathrm{RS}, \angle \mathrm{MXQ}=135^{\circ}$ and $\angle \mathrm{MYR}=40^{\circ}$, find $\angle \mathrm{XMY}$.

Fig. 6.24
12. (i) Rationalize the denominator of $\frac{1}{2+\sqrt{3}}$.
(ii) Rationalize the denominator of $\frac{5}{\sqrt{3-\sqrt{5}}}$
13. Find the value of k, if $x=2, y=1$ is a solution of the equation $2 x+3 y=k$.

SECTION $-\mathrm{C}(3 \times 8=24)$
14. Factorise $8 x^{3}+27 y^{3}+36 x^{2} Y+54 x y^{2}$
15. Does Euclid's fifth postulate imply the existence of parallel lines? Explain.
16. In fig., lines $P Q$ and $R S$ intersect each other at point O. If $\angle P O R: \angle R O Q=5: 7$, find all the angels.

17. Find the area of a triangle, two sides of which are 8 cm and 11 cm and the perimeter is 32 cm (see fig).

18. Line-segment $A B$ is parallel to another line-segment $C D$. O is the mid-point of $A D$ (see fig). Show that (i) $\triangle \mathrm{AOB} \cong \triangle \mathrm{DOC}$ (ii) O is also the mid-point of BC .

19. In fig., sides AB and AC of $\triangle \mathrm{ABC}$ are extended to points P and Q respectively. Also, $\angle \mathrm{PBC}<\angle \mathrm{QCB}$. Show that $A C>A B$.

20. In an isosceles triangle $A B C$ with $A B=A C, D$ and E are points on $B C$ such that $B E=C D$ (see Fig). Show that AD = AE .

21. Students of a school staged a rally for cleanliness campaign. They walked through the lanes in two groups. One group walked through the lanes AB, BC and CA ; while the other through AC, CD and DA (see fig). Then they cleaned the area enclosed within their lanes. If $A B=9 \mathrm{~m}, \mathrm{BC}=40 \mathrm{~m}, \mathrm{CD}=15 \mathrm{~m}$, $D A=28 \mathrm{~m}$ and $\angle \mathrm{B}=90^{\circ}$, which group cleaned more area and by how much? Find the total area cleaned by the students (neglecting the width of the lanes).

SECTION - D (4 $\times 5=20)$
22. Factorise: $\mathrm{x}^{3}-23 \mathrm{x}^{3}+142 \mathrm{x}-120$.
23. Locate the points $(5,0),(0,5),(2,5),(5,2),(-3,5),(-3,-5),(5,-3)$ and $(6,1)$ in the Cartesian plane.
24. The taxi fare in a city is a s follows: For the first kilometer, the fare is Rs 8 and for the subsequent distance it is Rs 5 per km . taking the distance covered as xkm and total fare as Rs y , write a linear equation for this information, and draw its graph.
25. In right triangle $A B C$, right angled at C, M is the mid-point of hypotenuse $A B$. C is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B (see fig). Show that:
(i) $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$
(ii) $\angle \mathrm{DBC}$ is a right angle.
(iii) $\Delta \mathrm{DBC} \cong \triangle \mathrm{ACB}$
(iv) $\mathrm{CM}=\frac{1}{2} \mathrm{AB}$

26. Verify that $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$

