NON - NCERT

		51 - 11)	NON - NCENT	CLA35. 10	
SY AR GEO GEI	LLABUS :LINE FHEMETIC PRO OMETRY, CONS NERAL INSTRUC All questions arecom The question paper co Section – A : Questic Section – B : Questic Section – C : Questic Section – D : Questic	AR EQUATION ANI GRESSIONS, REAL TRUCTIONS, SIMIL CTIONS : Draw Diago pulsory. Maximum Mar onsists of 25 Questions. on 1 to 10 are 1mark each on 11 to 13 are 2 marks each on 14 to 21 are 3 marks each on 22 to 26 are 4 marks each	D TWO VARIABLES NUMBER, POLYNO AR TRIANGLES. cams with Pencils. ks are 60.	S, QUADRATIC EQUATIONS, DMIALS, CO - ORDINATE	
SEC	TION A: (1)	$\times 10 = 10)$			
1.	For any positive in	nteger a and 3, there ex	ist unique integers q a	nd r such that $a = 3q + r$, where r must	
	satisfy:			•	
	(a) $0 \le r < 3$	(b) 1 < r < 3	(c) $0 < r < 3$	(d) $0 < r \le 3$	
2.	The quadratic polynomial whose sum of zeroes is 3 and product of zeroes is -2 is:				
	(a) $x^2 + 3x - 2$	(b) $x^2 - 2x + 3$	(c) $x^2 - 3x + 2$	(d) $x^2 - 3x - 2$	
3.	If $p(x) = ax + b$, the function $f(x) = b$ is the function of $a = b$ is the function of $a = b$.	hen zero of $p(x)$ is:			
	(a) a	(b) b	$(c)\frac{-a}{b}$	$(d)\frac{-b}{a}$	
4.	What will be the degree of linear equation in two variables?				
	(a) 0	(b) 1	(c) 2	(d) none of these	
5.	The distance of the point P(5, -12) from the origin is:				
	(a) 17 units	(b) 7 units	(c) 4 units	(d) 13 units	
6.	The value of $(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})$ is:				
	(a) 10	(b) 7	(c) 3	(d) $\sqrt{3}$	
7.	The sides of two s	similar triangles are in t	he ratio 5 : 7, then the	area of these triangles are in the ratio	
8.	The pair of lines represented by the equations $3x + y + 3 = 0$ and $6x + ky + 5 = 0$ will be parallel if				
	value of k is				
		OR			
	If the quadric equation $x^2 - 2x + k = 0$ has equal roots, then the value of k is				
9.	175 can be expressed as a product of its primes as :				
	(a) $5^2 \times 7$	(b) $5^2 \times 13$	(c) 5×13^2	(d) $2 \times 3^2 \times 5^2$	
10	. The product of the	The product of the zeroes of the polynomial $2x^2 - 1x - 3$ is :			
	(a) $\frac{-3}{2}$	(b) $\frac{-1}{2}$	(c) $\frac{1}{2}$	$(d)\frac{3}{2}$	

MATHS (GRAND TEST - II)

SECTION B : $(2 \times 3 = 6)$

- **11.** Find the ratio between the LCM and HCF of 5, 15 and 20.
- **12.** Find the middle term of the AP -6, -2, 2,, 58.

OR

Find 10th term from end of the AP 4, 9, 14,, 254.

13. For what value of p will the following pair of linear equations have infinitely many solutions?

(p-3)x + 3y = p; px + py = 12

OR

If one diagonal of a trapezium divides the other diagonal in the ratio 1 : 3, prove that one of the parallel sides is three times the other.

SECTION C : $(3 \times 8 = 24)$

- 14. Find the zeroes of the quadratic polynomial $x^2 3x 10$ and verify the relationship between the zeroes and coefficient.
- **15.** Draw a circle of radius 4 cm. From the point 7 cm away from its centre, construct the pair of tangents to the circle.

OR

Draw a line segment of length 8 cm and divide it in the ratio 2 : 3.

16. Find the area of a triangle, whose sides are along the lines x = -5, y = 0 and 3x + 5y = 20.

OR

Find the area of a triangle ABC with vertex A (1, -4) and the mid – points of the sides through A being (2, -1) and (0, -1).

- 17. On dividing $x^3 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x 2 and -2x + 4, respectively. Find g(x).
- **18.** Solve : s t = 3

$$\frac{s}{3} + \frac{t}{2} = 6$$

- **19.** Prove $\sqrt{3}$ is an irrational number.
- **20.** Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

OR

Solve: 3x - y = 39x - 3y = 9

21. If A and B are (-2, -2) and (2, -4), respectively find the coordinates of P such that $AP = \frac{3}{7}AB$ and P lies on the line segment AB.

MATHS (GRAND TEST - II)

SECTION D : $(4 \times 5 = 20)$

- 22. A fraction becomes $\frac{8}{11}$, if 2 is added to both the numerator and the denominator. If 3 is added to both the numerator and the denominator it becomes $\frac{5}{6}$. Find the fraction.
- **23.** Find n and a_n of an AP : 2, 10, 18, ..., if its sum of nth term is 90.

OR

How many terms of the AP : 9, 17, 25, ... must be taken to give a sum of 636?

- 24. In a class test, the sum of Shefali's marks in Mathematics and English is 30. Had she got 2 marks more in mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects.
- **25.** In figure, DE \parallel OQ and DF \parallel OR. Show that EF \parallel QR.

OR

Prove that the ratio of areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

26. In figure, if LM || CB, LN || CD, prove that $\frac{AM}{AB} = \frac{AN}{AD}$.

OR

ABCD is a trapezium in which AB || DC and its diagonals intersect each other at the point O. Show that $\frac{AO}{BO} = \frac{OC}{OD}$.