SYLLABUS :LINEAR EQUATION AND TWO VARIABLES, QUADRATIC EQUATIONS, ARTHEMETIC PROGRESSIONS, REAL NUMBER, POLYNOMIALS, CO - ORDINATE GEOMETRY, CONSTRUCTIONS, SIMILAR TRIANGLES.

GENERAL INSTRUCTIONS : Draw Diagrams with Pencils.

- All questions arecompulsory. Maximum Marks are 60.
- The question paper consists of 25 Questions.
- Section - A : Question 1 to 10 are 1 mark each.
- Section - B : Question 11 to 13 are 2 marks each.
- Section - C : Question 14 to 21 are 3 marks each.
- Section - D : Question 22 to 26 are 4 marks each.

SECTION A : $(\mathbf{1} \times \mathbf{1 0}=\mathbf{1 0})$

1. For any positive integer a and 3 , there exist unique integers q and r such that $a=3 q+r$, where r must satisfy:
(a) $0 \leq \mathrm{r}<3$
(b) $1<$ r <3
(c) $0<r<3$
(d) $0<r \leq 3$
2. The quadratic polynomial whose sum of zeroes is 3 and product of zeroes is -2 is:
(a) $x^{2}+3 x-2$
(b) $x^{2}-2 x+3$
(c) $x^{2}-3 x+2$
(d) $x^{2}-3 x-2$
3. If $p(x)=a x+b$, then zero of $p(x)$ is:
(a) a
(b) b
(c) $\frac{-\mathrm{a}}{\mathrm{b}}$
(d) $\frac{-b}{a}$
4. What will be the degree of linear equation in two variables?
(a) 0
(b) 1
(c) 2
(d) none of these
5. The distance of the point $\mathrm{P}(5,-12)$ from the origin is:
(a) 17 units
(b) 7 units
(c) 4 units
(d) 13 units
6. The value of $(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})$ is:
(a) 10
(b) 7
(c) 3
(d) $\sqrt{3}$
7. The sides of two similar triangles are in the ratio $5: 7$, then the area of these triangles are in the ratio
\qquad
8. The pair of lines represented by the equations $3 x+y+3=0$ and $6 x+k y+5=0$ will be parallel if value of k is \qquad . .

OR

If the quadric equation $x^{2}-2 x+k=0$ has equal roots, then the value of k is \qquad .
9. 175 can be expressed as a product of its primes as :
(a) $5^{2} \times 7$
(b) $5^{2} \times 13$
(c) 5×13^{2}
(d) $2 \times 3^{2} \times 5^{2}$
10. The product of the zeroes of the polynomial $2 x^{2}-1 x-3$ is :
(a) $\frac{-3}{2}$
(b) $\frac{-1}{2}$
(c) $\frac{1}{2}$
(d) $\frac{3}{2}$

SECTION B : $(2 \times 3=6)$
11. Find the ratio between the LCM and HCF of 5, 15 and 20.
12. Find the middle term of the AP $-6,-2,2, \ldots, 58$.

OR

Find 10th term from end of the AP 4, 9, 14, \qquad 254.
13. For what value of p will the following pair of linear equations have infinitely many solutions?
$(p-3) x+3 y=p ; p x+p y=12$

OR

If one diagonal of a trapezium divides the other diagonal in the ratio $1: 3$, prove that one of the parallel sides is three times the other.

SECTION C : $(3 \times 8=24)$

14. Find the zeroes of the quadratic polynomial $x^{2}-3 x-10$ and verify the relationship between the zeroes and coefficient.
15. Draw a circle of radius 4 cm . From the point 7 cm away from its centre, construct the pair of tangents to the circle.

OR

Draw a line segment of length 8 cm and divide it in the ratio $2: 3$.
16. Find the area of a triangle, whose sides are along the lines $x=-5, y=0$ and $3 x+5 y=20$.

OR

Find the area of a triangle ABC with vertex $\mathrm{A}(1,-4)$ and the mid - points of the sides through A being $(2,-1)$ and $(0,-1)$.
17. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.
18. Solve : $\mathrm{s}-\mathrm{t}=3$

$$
\frac{s}{3}+\frac{t}{2}=6
$$

19. Prove $\sqrt{3}$ is an irrational number.
20. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as $2,-7,-14$ respectively.

Solve: $3 x-y=3$
$9 x-3 y=9$
21. If A and B are $(-2,-2)$ and $(2,-4)$, respectively find the coordinates of P such that $A P=\frac{3}{7} A B$ and P lies on the line segment AB .

SECTION D : (4×5 = 20)
22. A fraction becomes $\frac{8}{11}$, if 2 is added to both the numerator and the denominator. If 3 is added to both the numerator and the denominator it becomes $\frac{5}{6}$. Find the fraction.
23. Find n and a_{n} of an AP : $2,10,18, \ldots$, if its sum of nth term is 90 .

OR

How many terms of the AP: $9,17,25, \ldots$ must be taken to give a sum of 636 ?
24. In a class test, the sum of Shefali's marks in Mathematics and English is 30. Had she got 2 marks more in mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects.
25. In figure, $D E \| O Q$ and $D F \| O R$. Show that $E F \| Q R$.

Prove that the ratio of areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.
26. In figure, if $L M\|C B, L N\| C D$, prove that $\frac{A M}{A B}=\frac{A N}{A D}$.

OR
ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and its diagonals intersect each other at the point O . Show that $\frac{A O}{B O}=\frac{O C}{O D}$.

