TEST

- 1. Which of the following ions is smallest, why? N^{3-} , O^{2-} , F^{-}
- 2. Write the conjugate bases for NH₄⁺, HCO₃⁻.
- 3. What is meant by common ion effect?
- **4.** (a) State the law of constant composition.
 - (b) Why is the molality of solution independent of temperature?
- **5.** (a) predict the sign of ΔS for the following reaction:

$$CaCO_3(s) \xrightarrow{heat} CaO(s) + CO_2(g)$$

(b) State Hess's law.

OR

Define:

- (a) Standard enthalpy of formation.
- (b) Standard enthalpy of neutralisation.
- **6.** Calculate the bond order of N_2 and N_2^+ and compare their stability.
- 7. (a) Which series of lines of the hydrogen spectrum lies in UV region?
 - (b)the mass of electron is 9.1 $\times 10^{-31}$ kg. If its K.E. is 3×10^{-25} J, calculate its wavelength. (h = 6.626 \times 10⁻³⁴J s)
- **8.** (a) Define Hund's rule.
 - (b) Write the electronic configuration of $Cr^{3+}(24)$.
 - (c) Define Pauli's exclusion principle.
- **9.** Give reasons:
 - (a) Why are cations smaller than neutral atoms?
 - (b) Fluorine has lower electron gain enthalpy than chlorine.
 - (c) Sulphur has lesser ionisation enthalpy than phosphorous.
- 10. (a) Which of the following has minimum bond angle? H₂O, CO₂, NH₃, CH₄
 - (b) (i) why is σ bond stronger than π bond?
 - (ii) how many σ and π bonds are present in the following compound:

- **11.** Define the following:
 - (a) Critical temperature
- (b) Avogadro law
- (c) Charles's law

OR

- (a) Define most probable velocity.
- (b) Calculate the temperature at which the average speed of oxygen equals to that of hydrogen at 20 K.
- **12.** What is the value of equilibrium constant for the following at 400 K?

$$2NOCl(g) \rightleftharpoons 2NO(g) Cl_2(g)$$


$$\Delta H^{\circ} = 77.5 \text{ kJ mol}^{-1} \text{ R} = 8.314 \text{ JK}^{-1} \text{ mol}^{-1} \Delta S = 135 \text{ JK}^{-1} \text{mol}^{-1}$$
.

- **13.** (a) The concentration of hydrogen ion sample of soft drink is 4.0×10^{-3} M. What is its pH? [log 4 = 0.6021]
 - (b)The equilibrium constant 'K' for reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ is 4. What will be 'K'' for the reaction $HI(g) \rightleftharpoons \frac{1}{2}H_2(g) + \frac{1}{2}I_2(g)$?
 - (c) What is solubility product? What is the effect temperature on K_{sp}?

CLASS: 11th

OR

- (a) What do you conclude when $Q_c > K_c$?
- (b) What is meant by common ion effect?
- (c) What is the effect of tempreture on K_w (ionic product of water)?
- (d) K_w of water at 373 K is 1×10^{-12} . What will be the pH of H₂O at 373K? Is water acidic, basic or neutral at this temperature?
- **14.** Arrange B, C, N, O in increasing order of their ionisation enthalpy.
- **15.** Which gas law is shown by the following graph?

16. Predict the sign of ΔS for the reaction:

$$N_2(g) + 3H_2(g) \rightarrow 2 NH_3(g)$$

- 17. Write the conjugate acid of a Bronsted base NH₃.
- 18. Calculate the number of atoms in each of the following:
 - (a) 7.85 g of Fe (Atomic mass of Fe= 56 u)
 - (b) 4.68 mg of Si (Atomic mass of Si = 28 u)
- **19.** Elements X, Y and Z have 4, 5 and 7 valence electrons respectively.
 - (a) Write the molecular formulae of the compounds formed by these elements individually with hydrogen.
 - (b) Which of these compounds will have the highest dipole moment?
- **20.** Which of the following compounds will not exist as resonance hybrid? give reason for your choice. CO_3^{2-} , CH_3OH , SO_4^{2-} , C_6H_6
 - (b) an alcohol (boiling point 97°C) was mixed with a hydrocarbon (boiling point 68 °C). Suggest a suitable method to separate them. Explain the reason for your choice.

OR

Calculate the percentage of Cl n organic compound, 0.2175 h of which in the Carius method gave 0.5825 g of AgCl.

- **21.** (a) What is the difference between intensive and extensive properties?
 - (b) Calculate the amount of oxygen formed by heating 12.25 g of KCIO₃ at STP according to the equation:

$$2KCIO_3(s) \xrightarrow{\textit{heat}} 2KCl(s) + 3O_2(g)$$

- **22.** (a) What is photoelectric effect?
 - (b) Account for the following:
 - (i) The expected electronic configuration of copper is [Ar] $3d^94s^2$ but actually it is [Ar] $3d^{10}4s^1$.
 - (ii) In building up of atoms, the filling of 4s orbitals occurs before 3d orbitals.
- **23.** (a) Write electronic configuration of Cu^+ ion (Z = 29).
 - (b) Calculate the de Broglie wavelength of milligram sized object moving with 1% speed of light. Planck's constant (h) = 6.63×10^{-34} kg m² s⁻¹, Velocity of light (c) = 3.0×10^8 m s⁻¹
- 24. (a) Which hybrid orbitals are used by carbon in compound CH₃COOH?
 - (b) Predict the shape of PF₅ using VSEPR model.
 - (c) Write one difference between a sigma bond and a pi bond.

25. (a) for the equilibrium,

 $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ at 298 K, K = 1.8 × 10 ⁻⁷. Calculate Δ G° for the reaction. (R = 8.314 J K⁻¹ mol⁻¹)

(b) What will be the sign of ΔS for the reaction:

 $N_2(g) + O_2(g) \rightleftharpoons 2NO(g) - Heat$

Give reason in support of your support.

26. (a) Calculate pH of an aqueous solution of 1.0 M ammonium formate assuming complete dissociation.

 $(pK_a \text{ of HCOOH} = 3.8 \text{ and } pK_b \text{ of NH}_3 = 4.8)$

(b) State the formula of conjugate base of each of the following acids:

 $(i)H_3O^+$

- (ii) HSO₄
- (iii) H₃PO₄
- (iv) CH₃NH₃⁺

CLASS: 11th

27. Arrange the following in increasing order of basically:

F-, Br -, Cl-, I-

OR

(a) State the formula of conjugate acid of the following:

(i) OH-

- (ii) $C0_3^{2-}$
- (iii) (CH₃)₂NH
- (iv) HPO_4^{2-}
- (b) Saccharine ($K_a = 2 \times 10^{-12}$) is a weak acid represented by formula HSac. 4×10^{-4} mol of saccharine is dissolved in 200 cm³ water having pH . Assuming no change in volume, calculate concentration of Sac ion in resulting solution.
- 28. Write the IUPAC name and symbol for the element with atomic number 115.
- **29.** What will be the sign of work done in the following equation?

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

30. Write K_p in terms of K_c for the following chemical equation:

 $N_2(g) + 3H_2(g) \rightleftharpoons 2 NH_3(g)$

31. Arrange the following in order of property mentioned:

NaCl, NaBr, NaF, NaI (increasing ionic character).

- **32.** Account for the following:
 - (a) NF₃ is pyramidal while BF₃ is triangular planar.
 - (b) Bond angle in H₂ O is larger than bond angle in H₂S.
- 33. (a) The enthalpy of neutralisation of weak acid and strong base is less than 57.1 kJ mol⁻¹. Why?
 - (b) Why is ΔU a state function?

OR

State the first law of thermodynamics. Give its mathematical expression.

- **34.** (a) state Avogadro's law.
 - (b) what mass of excess of CaCO₃ with 25 ml of 0.75 M HCl according to the equation:

 $CaCO_3(s) + 2 HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_{2O}(l)$

[Atomic so of Ca = 40 u, C = 12 u, O = 16 u, Cl = 35.5 u, H = 1 u]

- **35.** (a) One unpaired electron in atom contributes a magnetic moment of 1.1 BM. Calculate the magnetic moment of chromium. (At. No. of Cr = 24)
 - (b) The uncertainty in the position and velocity of a particle are 10^{-2} m and 5.27×10^{-24} m s⁻¹ respectively. Calculate the mass of the particle (h = 6.62×10^{-34} kg m² s⁻¹).
- **36.** (a) StateAufbau's principle.
 - (b) Account for the following:
 - (i) 'N' has electronic configuration:

 $1s^22s^22p_x^12p_y^12p_z^1$ and not $1s^22s^22p_x^22p_y^1$

(ii) Bohr's orbits are called stationary states.

- **37.** Account for the following:
 - (a) Ionisation enthalpy of 'Ne' is more than 'F' although 'Ne' has bigger atomic size than 'F'.

CLASS: 11th

- (b) Al³⁺ is smaller than Mg²⁺ although both are isoelectronic.
- (c) Noble gases have low boiling points.
- **38.** (a) Write the molecular orbital configuration of O_2^+ . Calculate the bond order and predict its magnetic behaviour.
 - (b) What is the state of hybridisation of 'N' in N O_3^- ?
- **39.** (a) What is the SI unit of density?
 - (b) Calculate the volume occupied by 88 g of CO₂ at 30°C and 1 bar pressure.
 - $(R = 0.083 \text{ bar } L \text{ K}^{-1} \text{ mol}^{-1})$
- **40.** Calculate the standard enthalpy of formation of $C_6H_6(1)$ form the following data:

$$\begin{split} \mathrm{C_6H_6(\it{l})} + \frac{15}{2}\mathrm{O_2(\it{g})} &\longrightarrow 6\mathrm{CO_2(\it{g})} + 3\mathrm{H_2O(\it{l})}; \\ \Delta_c\mathrm{H}^\circ &= -3266.0 \text{ kJ mol}^{-1} \\ \mathrm{C(\it{s})} + \mathrm{O_2(\it{g})} &\longrightarrow \mathrm{CO_2(\it{g})}; \\ \Delta_f\mathrm{H}^\circ &= -393.1 \text{ kJ mol}^{-1} \\ \mathrm{H_2(\it{g})} + \frac{1}{2}\mathrm{O_2(\it{g})} &\longrightarrow \mathrm{H_2O(\it{l})}; \Delta_f\mathrm{H}^\circ &= -286.0 \text{ kJ mol}^{-1} \end{split}$$

- **41.** (a) Write conjugate base of NH_4^+ .
 - (b) Calculate pH of 1.0×10^{-8} M solution of NaOH.
 - (c) Calculate the solubility of $Ca_3(PO_4)_2$ in pure water if its solubility product is 1.08×10^{-23} .

OR

- (a) write the conjugate base of NH₃.
- (b) Give reasons:
- (i) A solution of CuSO₄ has pH less than 7.
- (ii) In qualitative analysis, H₂S is passed in acidic medium for group II.
- (c) state Le Chatelier's principle. What is the effect of temperature in
- (i)exothermic
- (ii) endothermic reversible reactions?
- **42.** Arrange the following in increasing order of ionic radii:

$$F^{-}$$
, O^{2-} , Mg^{2+} , Na^{+}

- **43.** Why are the droplets of water spherical in shape?
- **44.** What is the sign of ΔG for spontaneous process?
- **45.** What is the relationship between K_p and K_c for the following reaction?

$$NH_4Cl(s) \rightleftharpoons NH_3(g) + HCl(g)$$

46. The density of 3 molal solution of NaCl is 1.110 g ml⁻¹. Calculate the molarity of the solution.

OR

1 M solution of NaNO₃ has density 1.25 gcm⁻³. Calculate the molality.

[Molar mass of NaNO₃ is 85 g mol⁻¹].

- **47.** Conc. H₂SO₄ is 98% by mas and has density 1.84 g cm⁻³. What volume of concentrated acid is required to make 5.0 L of 0.5 M H₂SO₄ solution?
- **48.** (a) State Heisenberg's uncertainty principle.
 - (b) An electron has 0.1 nm uncertainty in position. What will be the uncertainty in velocity.

$$[m_e = 9.1 \times 10^{-31} \text{ kg}, h = 6.626 \times 10^{-34} \text{ Js}]$$

- **49.** (a) write all the four quantum numbers of an electron in the valence shell of Rb(37).
 - (b) Calculate the ratio of velocities of electron and proton if both have equal wavelength.

$$[m_e = 9.1 \times 10^{-31} \text{ kg}, m_p = 1.75 \times 10^{-27} \text{ kg}]$$

- **50.** Calculate the bond of H_2^+ , He_2^+ and O_2 after writing their electronic configuration. Predict their magnetic behaviour also.
- **51.** (a) Critical temperature of H₂, He, O₂, N₂ are 33.2 K, 5.3 K, 154.3 K and 126 K respectively. Arrange them in the order of liquefaction of gases.
 - (b) How is the viscosity affected by increase in temperature.
 - (c) Under which conditions, a gasdeviates most from an ideal gas behaviour?
- **52.** On the basis of Le Chatelier's principle, explain how temperature and pressure can be adjusted to increase the yield of ammonia in the following reaction:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
; $\Delta H = -92.38 \text{ kJ mol}^{-1}$

What will be the effect of addition of argon to the above reaction mixture at constant volume?

(b) Calculate the pH of 10^{-8} M HCl solution.

OR

(a) The value of K_c for the reaction 2HI (g) \rightleftharpoons H₂ (g) + I₂ (g) is 1 × 10⁻⁴.

At a given time, the composition of reaction mixture is

$$[HI] = 2 \times 10^{-5} \text{ M}, [H_2] = 1 \times 10^{-5} \text{ M} \text{ and } [I_2] = 1 \times 10^{-5} \text{ M}$$

In which direction will the reaction proceed?

CLASS: 11th